





# **MG2Lab Experimental Campaign**

From 25/09/2023 to 01/10/2023

Centro Nazionale Mobilità Sostenibile Spoke 13 – TASK 2.4

> Department of Energy Via Lambruschini, 4A 20156 Milano

# MG2lab – Multigood microgrid experimental facility

#### **Configuration**

- Electric power generation capacity: 100 kW
- Thermal power generation capacity: 45 kW
- Potable water production: 1 m<sup>3</sup>/h
- PEM electrolyzer 6 Nm<sup>3</sup>/h
- Electric storage: 150 kWh
- Hydrogen storage: 30 kWh
- Thermal storage: 50 kWh
- Electric Vehicles (EV): 2
- Electric Bikes: 10





#### **Case study microgrid configuration**



Power System (PV + BESS) connected to the National Electricity Grid through a single connection point

# Microgrid components PV fields

 $\Box$  PV1: 27kW<sub>nom</sub>

□ PV3: 25kW<sub>nom</sub>

#### **Batteries**

□ BESS: 70kW<sub>peak</sub>, size 70kWh

HyESS: 70kW<sub>peak</sub>, size 70kWh EV load

Data from JPL database
Grid

□ Maximum purchase electricity 40kW





|            | Module        | Technique          | Version | Reference |
|------------|---------------|--------------------|---------|-----------|
| FORECASTER | PV Forecaster | PHANN              | v1.0    | [1]       |
|            | EV Forecaster | LSTM+              | v2.1    | [2]       |
| OPTIMIZER  | 1° Layer      | Deterministic MILP | v1.0    | [3]       |
|            | 2° Layer      | Heuristic Control  | V1.2    | [4]       |

"Robust 24 Hours ahead Forecast in a Microgrid: A Real Case Study" <u>https://www.mdpi.com/2079-9292/8/12/1434</u>
 "User Behavior Clustering Based Method for EV Charging Forecast" <u>https://ieeexplore.ieee.org/document/10014991</u>
 "Assessing the impact of a two-layer predictive dispatch algorithm on design and operation of off-grid hybrid microgrids" <u>https://www.sciencedirect.com/science/article/pii/S0960148119307207?via%3Dihub</u>
 "Numerical and experimental testing of predictive EMS algorithms for PV-BESS residential microgrid" <u>https://ieeexplore.ieee.org/document/8810548</u>





### **Optimizer focus**







## Case Study – Data Features

| Data                   | Components | Reference           |
|------------------------|------------|---------------------|
| PV Data                | PV1, PV3   | MG2Lab Measurements |
| EV Data                | B2B        | JPL Dataset         |
| Simulation<br>Outcomes | /          | result's folder     |





#### Simulation Outcomes – PV forecasting performance







#### Simulation Outcomes – EV forecasting performance

LSTM behaviour From 2023-9-25 0:00 to 2023-10-1 23:45





#### Simulation Outcomes – EMS Optimization Results – Scheduling example



SOC (right axis) — Load – – Load + Battery Charge — Utility — Battery Discharge





#### Highlights

- Experimental activity has been performed without any malfunctioning during the entire week
- **PV Forecaster's** performances are very good and consistent over the entire week of experiments
- Two **EV Forecaster based** on the LSTM+ tested: the model ran every 24 hours misses some peaks, showing poorer performances if compared to the model ran every hour
- The EMS exploits the forecast to anticipates the change in the load and minimizes the overall operational costs









Finanziato dall'Unione europea NextGenerationEU









**VECTORS** 



Finanziato dall'Unione europea NextGenerationEU







#### **PNRR Total fund: around 200 MEuros**

#### **25** Universities and Research Centers





#### 24 Private Entities



CNMS – MOST